US009471435B2

a2 United States Patent
Michihata et al.

US 9,471,435 B2
Oct. 18, 2016

(10) Patent No.:
45) Date of Patent:

(54) INFORMATION PROCESSING DEVICE,
INFORMATION PROCESSING METHOD,
AND COMPUTER PROGRAM
(75) Inventors: Satoshi Michihata, Tokyo (JP);
Kiyoyasu Maruyama, Tokyo (JP)
(73) Mitsubishi Electric Corporation,
Tokyo (JP)

Assignee:

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 142 days.

Notice:

")

1) 14/370,657

(22)

Appl. No.:

PCT Filed: Jun. 11, 2012

(86) PCT No.: PCT/IP2012/064885

§ 371 (e)(D),

(2), (4) Date: Jul. 3, 2014

(87) PCT Pub. No.: WO02013/103023

PCT Pub. Date: Jul. 11, 2013

Prior Publication Data

US 2014/0365823 Al Dec. 11, 2014

(65)

(30) Foreign Application Priority Data

Jan. 5,2012 (JP) 2012-000492

(51) Int. CL
GOGF 11/00
GOGF 11/14
GOGF 9/44
U.S. CL
CPC

(2006.01)
(2006.01)
(2006.01)
(52)
......... GO6F 11/1441 (2013.01); GOG6F 9/4401
(2013.01); GO6F 11/1417 (2013.01); GO6F
11/1469 (2013.01)
(58) Field of Classification Search
CPC GOG6F 11/1417; GOGF 11/1441
See application file for complete search history.

START

BOOT PROCESS OF

(56) References Cited
U.S. PATENT DOCUMENTS
5,835,761 A 11/1998 Ishii et al.
6,018,629 A 1/2000 Tojima
(Continued)
FOREIGN PATENT DOCUMENTS
CN 102053875 A 5/2011
Jp 5-173965 A 7/1993
(Continued)

OTHER PUBLICATIONS

International Search Report, issued in PCT/JP2012/064885, dated
Aug. 28, 2012.

(Continued)

Primary Examiner — Yolanda L. Wilson
(74) Attorney, Agent, or Firm — Birch, Stewart, Kolasch
& Birch, LLP

(57) ABSTRACT

An information processing device includes: a nonvolatile
memory having a program area storing a program for
booting a system, and backup areas each storing a backup
program identical in content to the program; a process
executing unit that executes the program to perform a boot
process of the system; an error detection unit that performs
error detection on the program in parallel with the boot
process; and a reboot unit that, when the error detection unit
detects an error in the program, performs a recovery process
to replace the program with one of the backup programs, and
reboots the system using the replaced program. In the
recovery process, the reboot unit refers to history informa-
tion indicating a history of replacement of the program with
the backup programs, selects the backup program used for
the replacement from among the backup programs, and
replaces the program with the selected backup program.

17 Claims, 10 Drawing Sheets

BOOTING PROGRAM |

o
st CHE
00T

BOOT PROGESS OF
KERNEL PROGRAM

o\

CKSUM
ING PROS

TATE
oF
RAM

af

BOOT PROCESSES OF
APPLICATIONS

CALGULATE
CHECKSLM OF
KERNEL PROGRAM

GALGULATE GHECKSUM
OF APPLICATION
CONFIGURATION FILE

END

US 9,471,435 B2
Page 2

(56)

6,754,855

2001/0046157
2002/0053044

2003/0005277
2003/0182547
2004/0153724
2004/0268116

2005/0223211
2006/0085666

2008/0052506
2008/0148038

2010/0205423
2011/0093675
2012/0246384

2013/0031413

References Cited

U.S. PATENT DOCUMENTS

BL*

Al
Al*

Al*
Al*
Al*
Al*

Al
Al*

Al
Al*

Al*
Al*
Al*

Al*

6/2004

11/2001
5/2002

1/2003
9/2003
8/2004
12/2004

10/2005
4/2006

2/2008
6/2008

8/2010
4/2011
9/2012

1/2013

GOG6F 9/4406
714/25

Denninghoff

Haraguchi et al.

Gold ..covoeren GO6F 11/1417
714/6.24

Harding GO6F 11/1417
713/2

Kumagaic....... GOG6F 9/441
713/2

Nicholson GOGF 11/0709
714/6.11

Vasisht GO6F 11/1417
713/100

Sukegawa et al.

Stakutis GO6F 11/1417
714/2

Tima et al.
Abe i GOG6F 11/073
713/2
Shaocccevvirn GO6F 11/1417
713/2
LU e GO6F 11/1417
711/162
Lin e GOG6F 12/0246
711/103
Righi .coooevviecnn GO6F 11/1417
714/37

2014/0089563 Al*

3/2014 Wu

GO6F 11/1417
711/103

FOREIGN PATENT DOCUMENTS

JP 6-78086
JP 7-255080
JP 8-16408
JP 9-146814
JP 10-11293
JP 10-21085
JP 10-91405
JP 2001-331327
JP 2005-275697
JP 2008-84291
JP 2008-117148
JP 2008-217636
JP 2009-151384
JP 2010-26650
WO WO 2008/075646

A

A
A
A
A
A
A
A
A
A
A
A
A
A
A

—_

3/1994
10/1995
1/1996
6/1997
1/1998
1/1998
4/1998
11/2001
10/2005
4/2008
5/2008
9/2008
7/2009
7/2009
6/2008

OTHER PUBLICATIONS

Office Action issued in Japanese Patent Application No. 2013-

552383 dated Apr. 8, 2014.

* cited by examiner

U.S. Patent Oct. 18, 2016 Sheet 1 of 10 US 9,471,435 B2

FIG.1

1

/

INFORMATION PROCESSING DEVICE
4

/ EXTERNAL
INTERFACE [~ 8
-z
CPU i}
COMMUNICATION
UNIT ™5
A F N
A\ 4 A4
A -y
A\ 4 \ 4
WORK
NONVOLATILE MEMORY
~_ 3
MEMORY
b~ 2

U.S. Patent Oct. 18, 2016 Sheet 2 of 10

FIG.2

100 —~—r

BOOTING PROGRAM

101 —~—+F

CHECKSUM VALUE

102 ——

1)

1ST BOOTING PROGRAM BAGKUP

\

103

CHECKSUM VALUE

104 —~

2ND BOOTING PROGRAM BACKUP

105

)

CHECKSUM VALUE

106 —~—

KERNEL PROGRAM

107

)

CHECKSUM VALUE

108

)

1ST KERNEL PROGRAM BACKUP

109

\

CHECKSUM VALUE

110 ™

\

2ND KERNEL PROGRAM BACKUP

111]

)

CHECKSUM VALUE

112 ™~

APPLICATION CONFIGURATION FILE A

113 ™1

CHECKSUM VALUE

114 ——_|- APPLICATION CONFIGURATION FILE B

115 ™~

CHECKSUM VALUE

116 —~—+

1ST APPLICATION CONFIGURATION
FILE A BACKUP

17—~

CHECKSUM VALUE

18 —~+

1ST APPLICATION CONFIGURATION
FILE B BACKUP

119 —~—

CHECKSUM VALUE

120 ™~

2ND APPLICATION CONFIGURATION
FILE A BACKUP

121 —~—

CHECKSUM VALUE

122 ™~

2ND APPLICATION CONFIGURATION
FILE B BACKUP

123 ™—

CHECKSUM VALUE

124

1

REPLACEMENT FLAG INFORMATION

126]

\

BOOT HISTORY INFORMATION

128 ——

1

REPLACEMENT ORDER INFORMATION

US 9,471,435 B2

A

> B8

>~ B9

U.S. Patent Oct. 18, 2016

1

)

FIG.3

Sheet 3 of 10

US 9,471,435 B2

INFORMATION PROCESSING DEVICE

REPLACEMENT
CONTROL UNIT

12

A

REBOCT

/

ERROR

unt [

/

13

DETECTION
UNIT

A

FPROCESS
EXECUTING
UNIT

PARALLEL PROCESSING UNIT

U.S. Patent

Oct. 18, 2016

START)

Sheet 4 of 10

FIG.4

A

US 9,471,435 B2

BOOT PROCESS OF AN
BOOTING PROGRAM il
\ CALCULATE
$1 CHECKSUM OF ~ 82
BOOTING PROGRAM
;4
NO REBOOT
’ PROCESS
BOOT PROCESS OF VES S3
KERNEL PROGRAM
s CALCULATE .
CHECKSUM OF L S6
KERNEL PROGRAM S8
NO REBOOT
i PROCESS
BOOT PROGESSES OF VES S7
APPLICATIONS
7y \ CALCULATE CHECKSUM
S10 OF APPLICATION |— 311
CONFIGURATION FILE S13
NO REBOOT
PROCESS
YES S12
/T
A4

U.S. Patent Oct. 18, 2016 Sheet 5 of 10 US 9,471,435 B2

(START)
4
HALT BOOT PROCESS ™ 521
A 4
REFER TO AND CHANGE |~ g9y
BOOT HISTORY INFORMATION

REPLACEMENT
POSSIBLE 2 ISSUE MESSAGE
. S26
A4
PROGRAM (FILE)
REPLACE WITH BACKUP REPLACEMENT PROCESS
L S24 L s27

REBOOT 1
525

A

=

U.S. Patent Oct. 18, 2016 Sheet 6 of 10 US 9,471,435 B2

126
Z BOOT HISTORY
ADDRESS VAL
BOOTING PROGRAM N 0
KERNEL PROGRAM N+ 1 0
APPLICATION .
CONFIGURATION FILE A N+ 2 0
APPLICATION N3 .
CONFIGURATION FILE B

U.S. Patent Oct. 18, 2016 Sheet 7 of 10 US 9,471,435 B2

FIG.7

(START)
v

REPLACE 1ST BACKUP
WITH NEW PROGRAM (FILE)

v

CHANGE REPLAGEMENT ™~ 5§32
FLAGTO ‘1’

v

REPLACE BOOT PROGRAM (FILE)
WITH 1ST BACKUP

'

CHANGE BOOT HISTORY
VALUE TO ‘1’

v

REBOOT ™ 835

" 831

" 833

— "~ 834

FAULT ? YES

NO S36 S40
v e
CHANGE BOOT HISTORY REPLACE BOOT PROGRAM
VALUE TO ‘0’ (FILE) WITH 2ND BACKUP
L
v 837 v e S41
REPLACE 2ND BACKUP CHANGE BOOT HISTORY
WITH 1ST BACKUP VALUE TO ‘2’
A
i) S38 i - s42
CHANGE REPLACEMENT REBOOT

FLAG TO ‘0’
= 539

[ISSUE MESSAGE |

L S44

A

(END)

U.S. Patent Oct. 18, 2016 Sheet 8 of 10

US 9,471,435 B2

124
Z REPLACEMENT
ADDRESS e
BOOTING PROGRAM M 0
KERNEL PROGRAM M+ 1 0
APPLICATION \
CONFIGURATION FILE A M+ 2 0
APPLICATION s o
CONFIGURATION FILE B

U.S. Patent Oct. 18, 2016 Sheet 9 of 10 US 9,471,435 B2

FIG.9
(START)

FOR BOOTING PROGRAM,
ST BACKUP AND 2ND BACKUP AGREE ?

851

FOR BOOTING PROGRAM,

REPLAGE ONE BACKUP WITH THE OTHER BACKUP 852

X,
)

A 4

FOR KERNEL PROGRAM,
1ST BACKUP AND 2ND BACKUP AGREE ?

S53

FOR KERNEL PROGRAM, _~S54
REPLAGE ONE BACKUP WITH THE OTHER BACKUP

X
>

\ 4

FOR CONFIGURATION FILE A,
1ST BACKUP AND 2ND BACKUPR AGREE ?

§55

FOR APPLICATION CONFIGURATION FILE A, _— 356
REPLAGE ONE BACKUP WITH THE OTHER BACKUP

s
P
X

FOR CONFIGURATION FILE B,
1ST BACKUP AND 2ND BACKUP AGREE ?

5§57

FOR APPLICATION CONFIGURATION FILE B,
REPLAGE ONE BACKUP WITH THE OTHER BACKUP — 558

A4

(END)

U.S. Patent

Oct. 18, 2016

Sheet 10 of 10

US 9,471,435 B2

FIG.10
T1 T2 T3 T4 T5 T6
TIM>E
FIG.11
T11 T13 T15
T12 T14 T16
TIM;
FIG.12
T21 T23 T25
T22 T24 T26

TIME

US 9,471,435 B2

1
INFORMATION PROCESSING DEVICE,
INFORMATION PROCESSING METHOD,
AND COMPUTER PROGRAM

TECHNICAL FIELD

The present invention relates to an information processing
device, an information processing method, and a computer
program.

BACKGROUND ART

Recently, NAND-type flash memories, which are non-
volatile memories, have come into widespread use. Com-
pared with NOR-type flash memories, the NAND-type flash
memories have the advantages of higher capacity and lower
cost per bit, but the disadvantage of inferior data reliability,
because bit errors may occur due to leakage of charge when
the stored data are repeatedly read. Therefore, if a program
for booting a system is stored in a NAND-type flash
memory, because of such bit errors, the system may fail to
be booted or may hung up after being booted.

Patent Document 1 describes a control device that reads
a first boot program from a system nonvolatile memory and
performs error detection on the first boot program. If it
determines that the read first boot program has been improp-
erly changed, it reads a second boot program from a backup
nonvolatile memory and performs error detection on the
second boot program. If it determines that the read second
boot program has been improperly changed, it outputs an
error notification. When the control device determines, as a
result of the error detection on the first or second boot
program, that the boot program has not been improperly
changed, it performs a boot process using the boot program.

PRIOR ART REFERENCES
Patent References

Patent Document 1: Japanese Patent Application Publi-
cation No. 2010-26650

SUMMARY OF THE INVENTION
Problems to be Solved by the Invention

The control device described in Patent Document 1 per-
forms error detection on the boot program read from the
system nonvolatile memory, and if it determines as a result
of the error detection that the boot program has not been
improperly changed, then it starts the boot process using the
boot program. Therefore, there is a problem that the start of
the boot process is delayed.

An object of the present invention is to provide an
information processing device, an information processing
method, and a computer program that can start a boot
process of a system quickly and perform a reboot with a
highly reliable program when an error is detected in a
program for booting.

Means for Solving the Problems

An information processing device according to the pres-
ent invention includes:

a nonvolatile memory having a program area storing a
program for booting a system, and a plurality of backup
areas each storing a backup program identical in content to
the program;

10

15

20

25

30

35

40

45

50

55

60

65

2

a process executing means for executing the program
stored in the program area to perform a boot process of the
system,

an error detection means for performing error detection on
the program stored in the program area in parallel with the
boot process by the process executing means; and

a reboot means for, when the error detection means
detects an error in the program, performing a recovery
process to replace the program stored in the program area
with one of the backup programs stored in the backup areas,
and rebooting the system using the replaced program stored
in the program area; wherein

when performing the recovery process, the reboot means
refers to history information indicating a history of replace-
ment of the program with the backup programs, selects the
backup program used for the replacement from among the
backup programs based on the history information, and
replaces the program with the selected backup program.

An information processing method according to the pres-
ent invention includes:

a process executing step for executing a program for
booting a system stored in a nonvolatile memory to perform
a boot process of the system, the nonvolatile memory having
aprogram area storing the program and a plurality of backup
areas each storing a backup program identical in content to
the program;

an error detection step for performing error detection on
the program stored in the program area in parallel with the
boot process in the process executing step; and

a reboot step for, when the error detection step detects an
error in the program, performing a recovery process to
replace the program stored in the program area with one of
the backup programs stored in the backup areas, and reboot-
ing the system using the replaced program stored in the
program area; wherein

when performing the recovery process, the reboot step
refers to history information indicating a history of replace-
ment of the program with the backup programs, selects the
backup program used for the replacement from among the
backup programs based on the history information, and
replaces the program with the selected backup program.

A computer program according to the present invention
causes a computer to execute:

a process executing step for executing a program for
booting a system stored in a nonvolatile memory to perform
a boot process of the system, the nonvolatile memory having
aprogram area storing the program and a plurality of backup
areas each storing a backup program identical in content to
the program;

an error detection step for performing error detection on
the program stored in the program area in parallel with the
boot process in the process executing step; and

a reboot step for, when the error detection step detects an
error in the program, performing a recovery process to
replace the program stored in the program area with one of
the backup programs stored in the backup areas, and reboot-
ing the system using the replaced program stored in the
program area; wherein

when performing the recovery process, the reboot step
refers to history information indicating a history of replace-
ment of the program with the backup programs, selects the
backup program used for the replacement from among the
backup programs based on the history information, and
replaces the program with the selected backup program.

US 9,471,435 B2

3

Effect of the Invention

According to the present invention, it is possible to start
aboot process of a system quickly and perform a reboot with
a highly reliable program when an error is detected in a
program for booting.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram schematically showing the
configuration of an information processing device in an
embodiment.

FIG. 2 is a schematic diagram showing the storage format
of a nonvolatile memory.

FIG. 3 is a block diagram showing the functional con-
figuration of the information processing device in the
embodiment.

FIG. 4 is a flowchart showing the operation of the
information processing device in the embodiment.

FIG. 5 is a flowchart showing a reboot process.

FIG. 6 is a schematic diagram showing the format of boot
history information.

FIG. 7 is a flowchart showing a program (or file) replace-
ment process.

FIG. 8 is a schematic diagram showing the format of
replacement flag information.

FIG. 9 is a flowchart showing a backup check process.

FIG. 10 is a schematic diagram showing processing
periods in a configuration that performs boot processes after
error detection.

FIG. 11 is a schematic diagram showing processing
periods in the configuration of the embodiment.

FIG. 12 is a schematic diagram showing processing
periods in a configuration that performs boot processes and
error detection processes in parallel by different processing
devices.

MODES FOR CARRYING OUT THE
INVENTION

An embodiment of the invention will now be described
with reference to the drawings.

<Configuration of Information Processing Device>

FIG. 1 is a block diagram schematically showing the
configuration of an information processing device 1 accord-
ing to this embodiment. In FIG. 1, the information process-
ing device 1 includes a nonvolatile memory 2, a work
memory 3, a central processing unit (CPU) 4, a communi-
cation unit 5, and an external interface (external IF) 6.

The nonvolatile memory 2 is a readable and writable
memory, such as a NAND-type flash memory, that stores a
variety of programs and data. The nonvolatile memory 2
includes a program area storing a program (hereinafter
referred to as the ‘boot program’) for booting a system, and
one or more backup areas each storing a backup program
(also referred to as the copied program) identical in content
to the boot program. The system referred to above is
specifically a computer system, more specifically the com-
puter system (based around the CPU 4) of the information
processing device 1. In this example, the nonvolatile
memory 2 further includes a file area storing an application
configuration file for booting an application, and one or
more backup file areas each storing a backup file (also
referred to as the copied file) identical in content to the
application configuration file. Moreover, the number of the
one or more backup areas and the number of the one or more
backup file areas are both plural. Furthermore, for each of

20

30

40

45

4

the boot program, backup programs, application configura-
tion file, and backup files, the nonvolatile memory 2 stores
error detection data for detecting errors in the program or
file.

The work memory 3 is used as a work area by the CPU
4 and stores programs and data read from the nonvolatile
memory 2.

The CPU 4 executes programs such as the boot program
stored in the nonvolatile memory 2. Specifically, the non-
volatile memory 2 stores programs and data in blocks; the
CPU 4 reads (or copies) necessary blocks from the nonvola-
tile memory 2 into the work memory 3, accesses the work
memory 3, and executes processes described in the program
read into the work memory 3.

When the CPU 4 communicates with an external device
(externally connected device) connected to the information
processing device 1 via the external interface 6, the com-
munication unit 5 converts the sent and received data in
accordance with the communication protocol for communi-
cation with the externally connected device.

The external interface 6 is an interface, such as a universal
serial bus (USB) interface, for connecting the information
processing device 1 to the externally connected device.

FIG. 2 is a schematic diagram showing the storage format
of the nonvolatile memory 2. In the example of FIG. 2, the
nonvolatile memory 2 stores a booting program 100 for
performing a boot process after the system reset of the
information processing device 1 and a kernel program 106
for booting an operating system (OS) each serving as the
boot program. The nonvolatile memory 2 also stores an
application configuration file A 112 and an application
configuration file B 114 each serving as the application
configuration file and each required for booting an applica-
tion operating on the kernel.

The nonvolatile memory 2 also stores, as the backup
programs, a first booting program backup 102 and a second
booting program backup 104 each identical in content to the
booting program 100, and a first kernel program backup 108
and a second kernel program backup 110 each identical in
content to the kernel program 106. The nonvolatile memory
2 also stores, as the backup files, an first application con-
figuration file A backup 116 and an second application
configuration file A backup 120 each identical in content to
the application configuration file A 112, and an first appli-
cation configuration file B backup 118 and an second
application configuration file B backup 122 each identical in
content to the application configuration file B 114.

Respective checksum values 101, 103, 105, 107,109, 111,
113, 115, 117, 119, 121, and 123 are appended to the booting
program 100, first booting program backup 102, second
booting program backup 104, kernel program 106, first
kernel program backup 108, second kernel program backup
110, application configuration file A 112, application con-
figuration file B 114, first application configuration file A
backup 116, first application configuration file B backup
118, second application configuration file A backup 120, and
second application configuration file B backup 122, which
are stored in the nonvolatile memory 2, as corresponding
error detection data.

As shown in FIG. 2, the booting program 100 and its
checksum value 101 are stored in the same block B1; the
first booting program backup 102 and its checksum value
103 are stored in the same block B2; the second booting
program backup 104 and its checksum value 105 are stored
in the same block B3. Block B1 is a program area (also
referred to as the genuine block); blocks B2 and B3 are
backup areas (also referred to as the copied blocks). Simi-

US 9,471,435 B2

5

larly, the kernel program 106 and its checksum value 107 are
stored in the same block B4; the first kernel program backup
108 and its checksum value 109 are stored in the same block
B5; the second kernel program backup 110 and its checksum
value 111 are stored in the same block B6. Block B4 is a
program area (also referred to as the genuine area); blocks
B5 and B6 are backup areas (also referred to as the copied
blocks). Regarding the application configuration files, the
application configuration file A 112 and its checksum value
113 and the application configuration file B 114 and its
checksum value 115 are stored in the same block B7; the first
application configuration file A backup 116 and its checksum
value 117 and the first application configuration file B
backup 118 and its checksum value 119 are stored in the
same block B8; the second application configuration file A
backup 120 and its checksum value 121 and the second
application configuration file B backup 122 and its check-
sum value 123 are stored in the same block B9. Block B7 is
a file area (also referred to as the genuine area); blocks B8
and B9 are backup file areas (also referred to as the copied
blocks).

In addition to these, the nonvolatile memory 2 stores
replacement flag information 124 used in a program replace-
ment process and a file replacement process, which will be
described later, and boot history information 126 for record-
ing history information of system booting. The nonvolatile
memory 2 may further store replacement order information
128 indicating an order of the backup programs for replace-
ment.

FIG. 2 shows an example of the storage format of the
nonvolatile memory 2, but the storage format is not limited
to this.

The booting program 100 is programmed so as to cause
the CPU 4 to transfer the booting program 100 itself and its
checksum value 101 stored in the nonvolatile memory 2 to
the work memory 3, perform an initialization process of the
information processing device 1, and then make the reading
destination jump to the kernel program 106. Thus, the
booting program 100 describes a boot process. The booting
program 100 is also programmed so as to cause the CPU 4
to execute, in parallel with the boot process, an error
detection process that performs checksum calculation on the
booting program 100 transferred to the work memory 3 and
compares the result of the calculation with the checksum
value 101 to check whether the booting program 100 has any
errors (or the correctness of the booting program 100). Thus,
the booting program 100 describes the error detection pro-
cess and a parallel control for performing the boot process
and error detection process in parallel.

The kernel program 106 is programmed so as to cause the
CPU 4 to transfer the kernel program 106 itself and its
checksum value 107 stored in the nonvolatile memory 2 to
the work memory 3, and execute a system control process
that performs system setting such as activation of peripheral
devices including the communication unit 5. Thus, the
kernel program 106 describes a boot process for booting the
OS. The kernel program 106 is also programmed so as to
cause the CPU 4 to execute, in parallel with the system
control process, an error detection process that performs
checksum calculation on the kernel program 106 transferred
to the work memory 3 and compares the result of the
calculation with the checksum value 107 in the work
memory 3 to check whether the kernel program 106 has any
errors (or the correctness of the kernel program 106). Thus,
the kernel program 106 describes the error detection process
and a parallel control for performing the boot process and
error detection process in parallel.

10

15

20

25

30

35

40

45

50

55

60

65

6

The application configuration file A 112 is executed after
the booting of the kernel program 106, and is programmed
so as to cause the CPU 4 to transfer the application con-
figuration file A 112 itself and its checksum value 113 stored
in the nonvolatile memory 2 to the work memory 3 and
execute a predetermined process for booting an application.
Thus, the application configuration file A 112 describes a
boot process for booting the application. The application
configuration file A 112 is also programmed so as to cause
the CPU 4 to execute, in parallel with the above process, an
error detection process that performs checksum calculation
on the application configuration file A 112 transferred to the
work memory 3 and compares the result of the calculation
with the checksum value 113 in the work memory 3 to check
whether the application configuration file A 112 has any
errors (or the correctness of the application configuration file
A 112). Thus, the application configuration file A 112
describes the error detection process and a parallel control
for performing the boot process and error detection process
in parallel.

The application configuration file B 114 is similar to the
application configuration file A 112, and also describes a
boot process, an error detection process, and a parallel
control.

In addition, each of the booting program 100, kernel
program 106, application configuration file A 112, and
application configuration file B 114 describes a reboot
process and a replacement control.

FIG. 3 is a block diagram showing the functional con-
figuration of the information processing device 1 according
to this embodiment. In FIG. 3, the information processing
device 1 includes a parallel processing unit 10, a process
executing unit 11, an error detection unit 12, a reboot unit 13,
and a replacement control unit 14.

Specifically, the parallel processing unit 10, process
executing unit 11, error detection unit 12, reboot unit 13, and
replacement control unit 14 are respectively implemented by
execution, by the CPU 4, of the parallel controls, boot
processes, error detection processes, reboot processes, and
replacement controls described in the booting program 100,
kernel program 106, application configuration file A 112,
and application configuration file B 114.

The parallel processing unit 10 performs a control for
processing multiple processes, including the boot processes
and error detection processes, in parallel by time division.
Specifically, the parallel processing unit 10 controls the CPU
4 so that it performs multiple processes in parallel by
dividing the processing time of the CPU 4 into small
segments and assigning the small time segments to the
processes in turn.

The process executing unit 11 executes the boot programs
stored in the program areas in the nonvolatile memory 2 to
perform the boot processes for booting the system. Specifi-
cally, the process executing unit 11 executes the boot process
described in the booting program 100, which is called after
the system reset, executes the boot process described in the
kernel program 106, which is called by the booting program
100, and executes the boot processes described in the
application configuration file A 112 and application configu-
ration file B 114, thereby executing a process to boot the
applications. The process executing unit 11 may further
perform arithmetic processing or other processing on the
applications.

In parallel with the boot processes by the process execut-
ing unit 11, the error detection unit 12 performs error
detection on the boot programs stored in the program areas
and application configuration files to check the correctness

US 9,471,435 B2

7

of the boot programs and application configuration files.
Specifically, the error detection unit 12 performs error
detection on the booting program 100, kernel program 106,
application configuration file A 112, and application con-
figuration file B 114 using the respective error detection
data. More specifically, the error detection unit 12 calculates
checksum values for the booting program 100, kernel pro-
gram 106, application configuration file A 112, and appli-
cation configuration file B 114 stored in the nonvolatile
memory 2, compares the calculated checksum values with
the corresponding checksum values stored in advance in the
nonvolatile memory 2 to detect whether the boot programs
and files have been improperly changed, and notifies the
reboot unit 13 of the detection results.

When the error detection unit 12 detects an error in a boot
program (the booting program 100 or kernel program 106),
the reboot unit 13 reboots the system by using a backup
program (the first booting program backup 102, second
booting program backup 104, first kernel program backup
108, or second kernel program backup 110) stored in the
backup areas in order to prevent the system from failing to
be booted or freezing. In this example, when the error
detection unit 12 detects an error in a boot program, the
reboot unit 13 performs a recovery process to replace the
boot program stored in the program area with a backup
program stored in the backup areas, and reboots the system
using the replaced boot program. When performing the
recovery process, the reboot unit 13 refers to history infor-
mation indicating a history of replacement of the boot
program with the backup programs (or history information
regarding a history in which the boot program has been
replaced with the backup programs), selects the backup
program to be used for the replacement from among the
backup programs based on the history information, and
replaces the boot program stored in the program area with
the selected backup program. The history information is
included in the boot history information 126 in the nonvola-
tile memory 2. The reboot unit 13 may further refer to
replacement order information indicating an order of the
backup programs for the replacement, select the backup
program to be used for the replacement from among the
backup programs based on the replacement order informa-
tion and history information, and replace the boot program
stored in the program area with the selected backup pro-
gram. The replacement order information indicates an order
in which the backup programs are to be used for the
replacement, and is included in the replacement order infor-
mation 128 in the nonvolatile memory 2. When performing
the recovery process, the reboot unit 13 selects the backup
program to be used for the replacement in the recovery
process based on the history information so that the backup
programs are used in the order indicated by the replacement
order information. In one aspect, when performing the
recovery process, the reboot unit 13 selects, based on the
history information (or the history information and replace-
ment order information), a backup program that has not been
used for the replacement from among the backup programs
stored in the backup areas, and replaces the boot program
stored in the program area with the selected backup pro-
gram. On the other hand, when the error detection unit 12
detects an error in the boot program, if the backup areas
include no backup program that has not been used for the
replacement, the reboot unit 13 causes the replacement
control unit 14 to execute the program replacement process,
which will be described later.

When the error detection unit 12 detects an error in an
application configuration file (the application configuration

10

15

20

25

30

35

40

45

50

55

60

65

8

file A 112 or B 114), the reboot unit 13 reboots the appli-
cation using a backup file (the first application configuration
file A backup 116, second application configuration file A
backup 120, first application configuration file B backup
118, or second application configuration file B backup 122)
stored in the backup file areas. In this example, when the
error detection unit 12 detects an error in an application
configuration file, the reboot unit 13 performs a recovery
process to replace the application configuration file stored in
the file area with a backup file stored in the backup file areas,
and reboots the application using the replaced application
configuration file. When performing the recovery process,
the reboot unit 13 refers to history information indicating a
history of replacement of the application configuration file
with the backup files (or history information regarding a
history in which the application configuration file has been
replaced with the backup files), selects the backup file to be
used for the replacement from among the backup files based
on the history information, and replaces the application
configuration file stored in the file area with the selected
backup file. The history information is included in the boot
history information 126 in the nonvolatile memory 2. The
reboot unit 13 may further refer to replacement order infor-
mation indicating an order of the backup files for the
replacement, select the backup file to be used for the
replacement from among the backup files based on the
replacement order information and history information, and
replace the application configuration file stored in the file
area with the selected backup file. The replacement order
information indicates an order in which the backup files are
to be used for the replacement, and is included in the
replacement order information 128 in the nonvolatile
memory 2. When performing the recovery process, the
reboot unit 13 selects the backup program to be used for the
replacement in the recovery process based on the history
information so that the backup files are used in the order
indicated by the replacement order information. In one
aspect, when performing the recovery process, the reboot
unit 13 selects, based on the history information (or the
history information and replacement order information), a
backup file that has not been used for the replacement from
among the backup files stored in the backup file areas, and
replaces the application configuration file stored in the file
area with the selected backup file. On the other hand, when
the error detection unit 12 detects an error in the application
configuration file, if the backup file areas include no backup
file that has not been used for the replacement, the reboot
unit 13 causes the replacement control unit 14 to execute the
file replacement process, which will be described later.

When the reboot unit 13 replaces a boot program with a
backup program in the recovery process, it copies the
backup program stored in the backup area to the program
area as the new boot program, or overwrites the boot
program stored in the program area with the backup program
stored in the backup area, for example. The same applies to
a case where an application configuration file is replaced
with a backup file.

The replacement control unit 14 performs the program
replacement process to obtain a new boot program from an
external source and replace a boot program with the new
boot program. When an error is detected in a boot program
(the booting program 100 or kernel program 106), if the
backup areas include no backup program that has not been
used for the replacement, the program replacement process
is executed. The program replacement process is also
executed when a boot program (the booting program 100 or
kernel program 106) is updated. In this example, in the

US 9,471,435 B2

9

program replacement process, the replacement control unit
14 obtains a new boot program for replacement from a
source external to the information processing device 1,
replaces a predetermined backup program of the backup
programs stored in the backup areas with the new boot
program, and replaces the boot program stored in the pro-
gram area with the replaced predetermined backup program.
Then, when the replaced boot program is executed, if there
is no fault, the replacement control unit 14 replaces all of the
backup programs other than the predetermined backup pro-
gram with the replaced predetermined backup program or
the replaced boot program, and if there is a fault, it replaces
the boot program stored in the program area with a backup
program other than the predetermined backup program.

The replacement control unit 14 also performs the file
replacement process to obtain a new application configura-
tion file from an external source and replace an application
configuration file with the new application configuration file.
When an error is detected in an application configuration file
(the application configuration file A 112 or B 114), if the
backup file areas include no backup file that has not been
used for the replacement, the file replacement process is
executed. The file replacement process is also executed
when an application configuration file (the application con-
figuration file A 112 or B 114) is updated. In this example,
in the file replacement process, the replacement control unit
14 obtains a new application configuration file for replace-
ment from a source external to the information processing
device 1, replaces a predetermined backup file of the backup
files stored in the backup file areas with the new application
configuration file, and replaces the application configuration
file stored in the file area with the replaced predetermined
backup file. Then, when the replaced application configu-
ration file is executed, if there is no fault, the replacement
control unit 14 replaces all of the backup files other than the
predetermined backup file with the replaced predetermined
backup file or the replaced application configuration file, and
if there is a fault, it replaces the application configuration file
stored in the file area with a backup file other than the
predetermined backup file.

When the replacement control unit 14 replaces a backup
program with a new boot program, it copies the new boot
program to the backup area as the new backup program, or
overwrites the backup program stored in the backup area
with the new boot program, for example. The same applies
to a case where a boot program is replaced with a backup
program, a case where a backup file is replaced with a new
application configuration file, and the like.

In the program replacement process and file replacement
process, the new boot program and application configuration
file obtained from the external source by the replacement
control unit 14 may be identical to the boot program and
application configuration file currently stored in the non-
volatile memory 2, or may be newer versions than the
currently stored boot program and application configuration
file.

<Operation of Information Processing Device>

FIG. 4 is a flowchart showing the operation of the
information processing device 1 according to this embodi-
ment. The operation of the information processing device 1
will be described below with reference to FIG. 4.

When the system reset is released, the CPU 4 accesses a
predetermined address (hereinafter referred to as the “boot
address’) at which the booting program 100 is stored in the
nonvolatile memory 2 and transfers the booting program 100
and its checksum value 101 to the work memory 3. Then, the
CPU 4 reads the booting program 100 from the work

10

15

20

25

30

35

40

45

50

55

60

65

10

memory 3 and executes the boot process, including the
initialization process, described in the booting program 100
(S1). In this example, the boot address is a fixed address.

Next, in accordance with instructions described in the
booting program 100, the CPU 4 jumps to the address at
which the kernel program 106 is stored and transfers the
kernel program 106 and its checksum value 107 to the work
memory 3. Then, the CPU 4 reads the kernel program 106
from the work memory 3 and executes the boot process
described in the kernel program 106 (S5).

Next, when the booting of the kernel program 106 is
completed, the CPU 4 transfers the application configuration
files A 112 and B 114 for booting the applications specified
in advance in the kernel and the respective checksum values
113 and 115 from the nonvolatile memory 2 to the work
memory 3. Then, the CPU 4 reads the application configu-
ration files A 112 and B 114 from the work memory 3 and
executes the boot processes described in the application
configuration files A 112 and B 114 to boot the applications,
providing the intended applications to a user (S10). The
application configuration files A 112 and B 114 may be
executed sequentially one by one or may be executed in
parallel.

Meanwhile, by executing the parallel control described in
the booting program 100, in parallel with the boot process of
the booting program 100 in step S1, the CPU 4 executes the
error detection process described in the booting program 100
and calculates the checksum value of the booting program
100 (S2). The CPU 4 then determines whether the calculated
checksum value agrees with the checksum value 101 of the
booting program 100 (S3). If the two do not agree (NO in
step S3), the CPU 4 determines that the booting program 100
has an improper bit change and proceeds to the reboot
process (S4). In this reboot process, the CPU 4 performs the
recovery process to replace the booting program 100 with
the first booting program backup 102 or second booting
program backup 104 and reboots the system using the
replaced booting program 100. The reboot process (S4) will
be detailed later.

On the other hand, if the calculated checksum value of the
booting program 100 agrees with the checksum value 101
(YES in step S3), the CPU 4 determines that the booting
program 100 is free of improper bit changes, and calculates
the checksum value of the kernel program 106, which is read
following the booting program 100 (S6). The CPU 4 then
determines whether the calculated checksum value agrees
with the checksum value 107 of the kernel program 106
(S7). If the two do not agree (NO in step S7), the CPU 4
determines that the kernel program 106 has an improper bit
change and proceeds to the reboot process (S8). In this
reboot process, the CPU 4 performs the recovery process to
replace the kernel program 106 with the first kernel program
backup 108 or second kernel program backup 110 and
reboots the system using the replaced kernel program 106.
The reboot process (S8) will be detailed later.

On the other hand, if the calculated checksum value of the
kernel program 106 agrees with the checksum value 107
(YES in step S7), the CPU 4 determines that the kernel
program 106 is free of improper bit changes, and calculates
the checksum value of the application configuration file A
112, which is read following the kernel program 106 (S11).
The CPU 4 then determines whether the calculated check-
sum value agrees with the checksum value 113 of the
application configuration file A 112 (S12). If the two do not
agree (NO in step S12), the CPU 4 determines that the
application configuration file A 112 has an improper bit
change and proceeds to the reboot process (S13). In this

US 9,471,435 B2

11

reboot process, the CPU 4 performs the recovery process to
replace the application configuration file A 112 with the first
application configuration file A backup 116 or second appli-
cation configuration file A backup 120 and reboots the
application using the replaced application configuration file
A 112. The reboot process (S13) will be detailed later.

On the other hand, if the calculated checksum value of the
application configuration file A 112 agrees with the check-
sum value 113 (YES in step S12), the CPU 4 determines that
the application configuration file A 112 is free of improper
bit changes. Then, if another application configuration file is
read, the CPU 4 performs, on the read application configu-
ration file, the same process as that performed on the
application configuration file A 112 (S11, S12); if no other
application configuration file is read, it enters a waiting state.
For example, when the application configuration file B 114
is read following the application configuration file A 112, the
CPU 4 performs the process on the application configuration
file B 114 following the process on the application configu-
ration file A 112 (S11, S12), entering the waiting state. When
the application configuration file B 114 is executed in
parallel with the application configuration file A 112, the
CPU 4 may perform the process on the application configu-
ration file B 114 in parallel with the process on the appli-
cation configuration file A 112.

Steps S1, S5, and S10 in FIG. 4 are implemented by
execution, by the CPU 4, of the boot processes described in
the booting program, kernel program, and application con-
figuration files, respectively. Steps S2 and S3, S6 and S7,
and S11 and S12 are implemented by execution, by the CPU
4, of the error detection processes described in the booting
program, kernel program, and application configuration
files, respectively. Steps S4, S8, and S13 are implemented by
execution, by the CPU 4, of the reboot processes described
in the booting program, kernel program, and application
configuration files, respectively. Thus, steps S1, S5, and S10
are processes in the process executing unit 11; steps S2, S3,
S6, S7, S11, and S12 are processes in the error detection unit
12; and step S4, S8, and S13 are processes in the reboot unit
13.

<Reboot Process>

FIG. 5 is a flowchart showing the reboot process. The
reboot processes in steps S4, S8, and S13 in FIG. 4 will be
described below with reference to FIG. 5.

First, the reboot process in step S4 will be described. In
the reboot process in step S4, as shown in FIG. 5, the CPU
4 halts the boot process (the process in step S1) first (S21).
Then, the CPU 4 refers to and changes the boot history
information 126 stored in the nonvolatile memory 2 (S22).

Here, the boot history information 126 will be described.
In this example, the boot history information 126 indicates
replacement sources (or copy sources) of the programs and
files being used for booting. FIG. 6 is a diagram showing the
format of the boot history information 126. In FIG. 6, the
boot history information 126 includes a boot history value
for each of the booting program 100, kernel program 106,
application configuration file A 112, and application con-
figuration file B 114. The boot history values for the booting
program 100, kernel program 106, application configuration
file A 112, and application configuration file B 114 are
recorded at addresses N, N+1, N+2, and N+3 in the non-
volatile memory 2, respectively. When the booting program
100 is booted for the first time, ‘0’ has been recorded at
address Nj; the value at address N is kept at ‘0’ until the
reboot process (S4) is performed. After the reboot process
(S4) is performed, when the booting program 100 is a
program replaced with the first booting program backup

10

15

20

25

30

40

45

50

55

60

65

12

102, 1’ is recorded at address N; when the booting program
100 is a program replaced with the second booting program
backup 104, ‘2’ is recorded at address N. Thus, at address N,
‘0%, ‘17, or “2’ is recorded; the boot history value ‘0’ indicates
that the booting program 100 stored in block B1 is not a
program replaced in the reboot process (S4), that is, is an
initial program; the boot history value ‘1’ indicates that the
booting program 100 stored in block B1 is a program
replaced with the first booting program backup 102 in the
reboot process (S4); the boot history value ‘2’ indicates that
the booting program 100 stored in block B1 is a program
replaced with the second booting program backup 104 in the
reboot process (S4). Accordingly, the CPU 4 can recognize
a program that is a replacement source (or copy source) of
the booting program 100 currently being used for booting by
referring to the boot history value at address N in the boot
history information 126.

In this example, the order of replacement of the booting
program 100 in the reboot process (S4) is defined so that the
first booting program backup 102 is used for the replacement
in the first reboot process and the second booting program
backup 104 is used for the replacement in the next reboot
process. The same applies to the kernel program 106,
application configuration file A 112, and application con-
figuration file B 114.

For example, the nonvolatile memory 2 stores the replace-
ment order information 128 indicating the replacement order
of the backup programs or backup files for each of the
booting program 100, kernel program 106, application con-
figuration file A 112, and application configuration file B
114; the CPU 4 determines the replacement order with
reference to the replacement order information 128. Spe-
cifically, the CPU 4 performs the processing in and after step
S22 based on the replacement order information 128. In this
configuration, the replacement order can be changed by
changing the replacement order information. For example,
the manufacturer of the information processing device 1 can
set the replacement order to an intended order by recording
the replacement order information indicating the intended
order into the nonvolatile memory 2. The information pro-
cessing device 1 may change the replacement order infor-
mation according to information on an error detection rate of
each block or other information, or operations from a user,
for example.

Returning to FIG. 5, in step S22, when the boot history
value for the booting program 100 is ‘0’, since the booting
program 100 is to be replaced with the first booting program
backup 102, the CPU 4 changes the boot history value for
the booting program 100 to ‘1°; when the boot history value
for the booting program 100 is ‘1°, since the booting
program 100 is to be replaced with the second booting
program backup 104, the CPU 4 changes the boot history
value for the booting program 100 to ‘2’; when the boot
history value for the booting program 100 is ‘2°, the CPU 4
does not change the boot history value for the booting
program 100.

Then, the CPU 4 determines whether it is possible to
replace the booting program 100 with a backup program
(S23). Specifically, if the boot history value at address N for
the booting program 100 is ‘0’ or ‘1°, the CPU 4 determines
that replacement is possible; if the boot history value is ‘2’,
it determines that replacement is impossible. The determi-
nation in step S23 is performed based on the boot history
value referred to in step S22, that is, the boot history value
before being changed in step S22.

If it is determined that replacement is possible (YES in
step S23), the CPU 4 replaces the booting program 100 and

US 9,471,435 B2

13

its checksum value 101 stored in block B1 with a backup
program and its checksum value (S24). Specifically, when
the boot history value for the booting program 100 is ‘0’, the
CPU 4 copies the first booting program backup 102 and its
checksum value 103 to block B1 as the new booting program
100 and its checksum value 101; when the boot history value
for the booting program 100 is “1°, it copies the second
booting program backup 104 and its checksum value 105 to
block B1 as the new booting program 100 and its checksum
value 101. When the replacement of the booting program
100 and its checksum value 101 is completed, the CPU 4
reboots the system (S25). Specifically, when the replacement
is completed, the CPU 4 executes a software reset and
accesses the boot address to perform the process in FIG. 4
from the beginning. That is, in FIG. 4, the processing returns
from step S4 to step S1, and the boot process of the booting
program 100 is performed again. In this case, the booting
program 100 after the replacement is read and executed. The
process in step S24 is performed based on the boot history
value referred to in step S22, that is, the boot history value
before being changed in step S22.

On the other hand, if it is determined that replacement of
the booting program 100 is impossible (NO in step S23), the
CPU 4 outputs a message informing that a new booting
program must be obtained from an external source to a
display unit (not shown) or the like (S26), and proceeds to
the program replacement process for replacing the booting
program with a booting program from an external source
(S27). The program replacement process will be detailed
later.

The above description illustrates the case where the first
booting program backup 102 and second booting program
backup 104 are used for the replacement of the booting
program 100 in this order, but they may be used in the order
of the second booting program backup 104 and first booting
program backup 102. In this case, when the boot history
value for the booting program 100 is ‘0’, the CPU 4 changes
the boot history value to ‘2’ and replaces the booting
program 100 with the second booting program backup 104;
when the boot history value is ‘2°, it changes the boot history
value to ‘1’ and replaces the booting program 100 with the
first booting program backup 102; when the boot history
value is ‘1°, it performs the program replacement process
without changing the boot history value. The same applies to
the kernel program 106, application configuration file A 112,
and application configuration file B 114.

Next, the reboot process in step S8 will be described. In
the reboot process in step S8, as shown in FIG. 5, the CPU
4 halts the boot process (the process in step S5) first (S21).
The CPU 4 then refers to and changes the boot history value
at address N+1 in the boot history information 126 stored in
the nonvolatile memory 2 (S22).

Here, the boot history value at address N+1 in the boot
history information 126 will be described. In FIG. 6, as in
the case of address N, 0, ‘1°, or ‘2’ is recorded at address
N+1 in the boot history information 126 as the boot history
value for the kernel program 106. For the kernel program
106, the boot history value ‘0’ indicates that the kernel
program 106 stored in block B4 is not a program replaced in
the reboot process (S8); the boot history value ‘1” indicates
that the kernel program 106 stored in block B4 is a program
replaced with the first kernel program backup 108 in the
reboot process (S8); the boot history value ‘2’ indicates that
the kernel program 106 stored in block B4 is a program
replaced with the second kernel program backup 110 in the
reboot process (S8).

10

15

20

25

30

35

40

45

50

55

60

65

14

Returning to FIG. 5, in step S22, when the boot history
value for the kernel program 106 is ‘0’, since the kernel
program 106 is to be replaced with the first kernel program
backup 108, the CPU 4 changes the boot history value for
the kernel program 106 to ‘1°; when the boot history value
for the kernel program 106 is ‘1°, since the kernel program
106 is to be replaced with the second kernel program backup
110, the CPU 4 changes the boot history value for the kernel
program 106 to ‘2°; when the boot history value for the
kernel program 106 is ‘2°, the CPU 4 does not change the
boot history value for the kernel program 106.

Then, the CPU 4 determines whether it is possible to
replace the kernel program 106 with a backup program
(S23). Specifically, if the boot history value at address N+1
for the kernel program 106 is ‘0’ or ‘1°, the CPU 4
determines that replacement is possible; if the boot history
value is ‘2°, it determines that replacement is impossible.
The determination in step S23 is performed based on the
boot history value referred to in step S22, that is, the boot
history value before being changed in step S22.

If it is determined that replacement is possible (YES in
step S23), the CPU 4 replaces the kernel program 106 and
its checksum value 107 stored in block B4 with a backup
program and its checksum value (S24). Specifically, when
the boot history value for the kernel program 106 is ‘0, the
CPU 4 copies the first kernel program backup 108 and its
checksum value 109 to block B4 as the new kernel program
106 and its checksum value 107; when the boot history value
for the kernel program 106 is “1°, it copies the second kernel
program backup 110 and its checksum value 111 to block B4
as the new kernel program 106 and its checksum value 107.
When the replacement of the kernel program 106 and the
checksum value 107 is completed, the CPU 4 reboots the
system (S25). Specifically, when the replacement is com-
pleted, the CPU 4 executes a software reset and accesses the
boot address, at which the booting program 100 is stored, to
perform the process in FIG. 4 from the beginning. That is,
in FIG. 4, the processing returns from step S8 to step S1, and
the boot process of the booting program 100 is performed
again. In the processing after the reboot, the kernel program
106 after the replacement is read and executed. The process
in step S24 is performed based on the boot history value
referred to in step S22, that is, the boot history value before
being changed in step S22.

On the other hand, if it is determined that replacement of
the kernel program 106 is impossible (NO in step S23), the
CPU 4 outputs a message informing that a new Kkernel
program must be obtained from an external source (S26),
and proceeds to the program replacement process for replac-
ing the kernel program 106 with a kernel program from an
external source (S27). The program replacement process
will be detailed later.

Next, the reboot process in step S13 will be described. In
the reboot process in step S13, as shown in FIG. 5, the CPU
4 halts the boot process (the process in step S10) first (S21).
The CPU 4 then refers to and changes the boot history value
at address N+2 in the boot history information 126 stored in
the nonvolatile memory 2 (S22).

Here, the boot history value at address N+2 in the boot
history information 126 will be described. In FIG. 6, as in
the case of the address N, ‘0°, ‘1°, or ‘2’ is recorded at
address N+2 in the boot history information 126 as the boot
history value for the application configuration file A 112. For
the application configuration file A 112, the boot history
value ‘0’ indicates that the application configuration file A
112 stored in block B7 is not a file replaced in the reboot
process (S13); the boot history value ‘1’ indicates that the

US 9,471,435 B2

15

application configuration file A 112 stored in block B7 is a
file replaced with the first application configuration file A
backup 116 in the reboot process (S13); the boot history
value ‘2’ indicates that the application configuration file A
112 stored in block B7 is a file replaced with the second
application configuration file A backup 120 in the reboot
process (S13).

Returning to FIG. 5, in step S22, when the boot history
value for the application configuration file A 112 is ‘0’, since
the application configuration file A 112 is to be replaced with
the first application configuration file A backup 116, the CPU
4 changes the boot history value for the application con-
figuration file A 112 to ‘1”; when the boot history value for
the application configuration file A 112 is ‘1°, since the
application configuration file A 112 is to be replaced with the
second application configuration file A backup 120, the CPU
4 changes the boot history value for the application con-
figuration file A 112 to ‘2’; when the boot history value for
the application configuration file A 112 is ‘2°, the CPU 4
does not change the boot history value for the application
configuration file A 112.

Then, the CPU 4 determines whether it is possible to
replace the application configuration file A 112 with a
backup file (S23). Specifically, if the boot history value at
address N+2 for the application configuration file A 112 is
‘0’ or “1°, the CPU 4 determines that replacement is possible;
if the boot history value is ‘2’, it determines that replacement
is impossible. The determination in step S23 is performed
based on the boot history value referred to in step S22, that
is, the boot history value before being changed in step S22.

If it is determined that replacement is possible (YES in
step S23), the CPU 4 replaces the application configuration
file A 112 and its checksum value 113 stored in block B7
with a backup file and its checksum value (S24). Specifi-
cally, when the boot history value for the application con-
figuration file A 112 is ‘0°, the CPU 4 copies the first
application configuration file A backup 116 and its checksum
value 117 to block B7 as the new application configuration
file A 112 and its checksum value 113; when the boot history
value for the application configuration file A 112 is ‘1°, it
copies the second application configuration file A backup
120 and its checksum value 121 to block B7 as the new
application configuration file A 112 and its checksum value
113. When the replacement of the application configuration
file A 112 and the checksum value 113 is completed, the
CPU 4 reboots the application (S25). Specifically, when the
replacement is completed, the CPU 4 loads again the appli-
cation configuration file A 112 in the state where the system
(specifically, the kernel) has been booted. Thus, in FIG. 4,
the processing moves from step S13 to step S10, and the
application configuration file A 112 is read and the boot
process of the application is performed again. In this case,
the application configuration file A 112 after the replacement
is read and executed. The process in step S24 is performed
based on the boot history value referred to in step S22, that
is, the boot history value before being changed in step S22.

On the other hand, if it is determined that replacement of
the application configuration file A 112 is impossible (NO in
step S23), the CPU 4 outputs a message informing that a new
application configuration file must be obtained from an
external source (S526), and proceeds to the file replacement
process for replacing the application configuration file A 112
with an application configuration file from an external
source (S27). The file replacement process will be detailed
later.

10

15

20

25

30

35

40

45

50

55

60

65

16

The reboot process for the application configuration file B
114 is the same as that for the application configuration file
A 112

As such, when the booting program 100, kernel program
106, application configuration file A 112, or application
configuration file B 114 is replaced with a backup program,
the backup program used for the replacement is selected
with reference to the boot history information 126. This
makes it possible to select a backup program that does not
meet the condition that it was used for the replacement of the
program and an error was detected in the replaced program
(or to select a backup program in which an error has not been
detected), so that the reboot process can be performed with
a more reliable backup program. For example, immediately
after a boot program is replaced with a first backup, when an
error is detected in the boot program, it is possible to select
a backup program (e.g., a second backup) other than the first
backup, which is likely to have an error, to perform the
reboot process, so that the reboot process can be performed
with a more reliable backup program.

<Program (File) Replacement Process>

FIG. 7 is a flowchart showing the program (or file)
replacement process in step S27 in FIG. 5. The program
replacement process for the booting program, the program
replacement process for the kernel program, and the file
replacement process for the application configuration file
will be described below with reference to FIG. 7. The
program (or file) replacement processes for the booting
program, kernel program, and application configuration file
are implemented by execution, by the CPU 4, of the replace-
ment controls described in the booting program, kernel
program, and application configuration file, respectively.

First, the program replacement process for the booting
program will be described. In the program replacement
process for the booting program, as shown in FIG. 7, when
the CPU 4 recognizes that an external memory has been
connected to the external interface 6, it reads a new booting
program for replacement and its checksum value from the
external memory through the communication unit 5 and
replaces the first booting program backup 102 and the
checksum value 103 with the new booting program and its
checksum value (S31). The external memory is connected to
the external interface 6 of the information processing device
1 by, for example, a user who has seen the message in step
S26 in FIG. 5, and is, for example, a portable memory such
as a USB memory.

When the replacement is completed, the CPU 4 changes
the replacement flag information 124 (S32).

Here, the replacement flag information 124 will be
described. The replacement flag information 124 indicates
whether the program (or file) replacement process is being
executed. FIG. 8 is a diagram showing the format of the
replacement flag information 124. In FIG. 8, the replace-
ment flag information 124 includes a replacement flag for
each of the booting program 100, kernel program 106,
application configuration file A 112, and application con-
figuration file B 114. The replacement flags for the booting
program 100, kernel program 106, application configuration
file A 112, and application configuration file B 114 are
recorded at addresses M, M+1, M+2, and M+3 in the
nonvolatile memory 2, respectively. Each of the replacement
flags is normally ‘0’ and is changed to ‘1’ when the program
(or file) replacement process is executed. At each of
addresses M, M+1, M+2, and M+3, ‘0’ or ‘1’ is recorded; ‘0’
indicates that the replacement process for the corresponding

US 9,471,435 B2

17

program (or file) is not being performed; ‘1’ indicates that
the replacement process for the corresponding program (or
file) is being performed.

Returning to FIG. 7, in step S32, the CPU 4 changes the
replacement flag at address M for the booting program 100
from ‘0’ to ‘1°. The replacement flag ‘1’ for the booting
program 100 indicates that the first booting program backup
102 has been replaced with a new booting program and thus
differs in content, from the booting program 100 and second
booting program backup 104.

Then, the CPU 4 replaces the booting program 100 and
checksum value 101 with the replaced first booting program
backup 102 and checksum value 103 (S33).

When the replacement is completed, the CPU 4 changes
the boot history value for the booting program 100 in the
boot history information 126 to ‘1’ (S34) and reboots the
system (S35). Specifically, the CPU 4 executes a software
reset, accesses the boot address, and reads and executes the
replaced booting program 100 to perform the boot process
(step S1 in FIG. 4) and the checksum calculation (step S2 in
FIG. 4) in parallel.

When the checksum calculation ends, the CPU 4 refers to
the replacement flag and boot history value for the booting
program 100 and, if the replacement flag and boot history
value are both ‘1°, proceeds to step S36 in FIG. 7. If the
replacement flag is ‘0, it proceeds to step S3 in FIG. 4; if
the replacement flag is ‘1° and the boot history value is ‘2°,
it proceeds to step S43 described later.

In step S36, the CPU 4 determines whether the booting
program 100 has any faults. Specifically, if the booting
program 100 boots normally and the calculated checksum
value agrees with the checksum value 101, the CPU 4
determines that there is no fault; if the booting program 100
does not boot normally, or if the two checksum values do not
agree, it determines that there is a fault.

If it is determined that there is no fault (NO in step S36),
the CPU 4 changes the boot history value for the booting
program 100 to ‘0’ (S37) and replaces the second booting
program backup 104 with the first booting program backup
102 (S38). Then, the CPU 4 returns the replacement flag for
the booting program 100 to ‘0’ (S39) and ends the program
replacement process. After the program replacement process
ends, the processing proceeds to step S6 in FIG. 4.

On the other hand, if it is determined that there is a fault
(YES in step S36), the CPU 4 replaces the booting program
100 with the second booting program backup 104 (S40),
changes the boot history value for the booting program 100
to ‘2’ (S41), and reboots the system (S42). Specifically, the
CPU 4 executes a software reset, accesses the boot address,
and reads and executes the replaced booting program 100 to
perform the boot process (step S1 in FIG. 4) and the
checksum calculation (step S2 in FIG. 4) in parallel.

When the checksum calculation ends, the CPU 4 refers to
the replacement flag and boot history value for the booting
program 100 and, if the replacement flag is ‘1’ and the boot
history value is ‘2’, it proceeds to step S43 in FIG. 7.

In step S43, the CPU 4 determines whether the booting
program 100 has any faults in the same way as in step S36.

If it is determined that there is no fault (NO in step S43),
the CPU 4 informs a user that the new booting program
obtained from the external source is faulty by, for example,
displaying it on a display unit (not shown) in step S44, and
ends the program replacement process. After the program
replacement process ends, the processing proceeds to step
S6 in FIG. 4.

On the other hand, if it is determined that there is a fault
(YES in step S43), the CPU 4 returns to step S26 in FIG. 5,

10

15

20

25

30

35

40

45

50

55

60

65

18

outputs again the message informing that a new booting
program must be obtained from an external source, and
executes the program replacement process (S27).

Next, the program replacement process for the kernel
program will be described. In the program replacement
process for the kernel program, as shown in FIG. 7, when the
CPU 4 recognizes that an external memory has been con-
nected to the external interface 6, it reads a new kernel
program for replacement and its checksum value from the
external memory and replaces the first kernel program
backup 108 and the checksum value 109 with the new kernel
program and checksum value (S31).

When the replacement is completed, the CPU 4 changes
the replacement flag at address M+1 for the kernel program
106 in the replacement flag information 124 from ‘0’ to ‘1°
(S32).

Then, the CPU 4 replaces the kernel program 106 and the
checksum value 107 with the replaced first kernel program
backup 108 and checksum value 109 (S33).

When the replacement is completed, the CPU 4 changes
the boot history value for the kernel program 106 in the boot
history information 126 to ‘1’ (S34) and reboots the system
(S35). Specifically, the CPU 4 executes a software reset,
accesses the boot address, reads and executes the booting
program 100, and then reads the kernel program 106 to
perform the boot process of the kernel program 106 (step S5
in FIG. 4) and the checksum calculation (step S6 in FIG. 4)
in parallel.

When the checksum calculation ends, the CPU 4 refers to
the replacement flag and boot history value for the kernel
program 106 and, if the replacement flag and boot history
value are both ‘1°, proceeds to step S36 in FIG. 7. If the
replacement flag is ‘0, it proceeds to step S7 in FIG. 4; if
the replacement flag is ‘1° and the boot history value is ‘2°,
it proceeds to step S43 described later.

In step S36, the CPU 4 determines whether the kernel
program 106 has any faults. Specifically, if the kernel
program 106 boots normally and the calculated checksum
value agrees with the checksum value 107, the CPU 4
determines that there is no fault; if the kernel program 106
does not boot normally, or if the two checksum values do not
agree, it determines that there is a fault.

If it is determined that there is no fault (NO in step S36),
the CPU 4 changes the boot history value for the kernel
program 106 to 0’ (S37) and replaces the second kernel
program backup 110 with the first kernel program backup
108 (S38). Then, the CPU 4 returns the replacement flag for
the kernel program 106 to ‘0’ (S39) and ends the program
replacement process. After the program replacement process
ends, the processing proceeds to step S11 in FIG. 4.

On the other hand, if it is determined that there is a fault
(YES in step S36), the CPU 4 replaces the kernel program
106 with the second kernel program backup 110 (S40),
changes the